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The purpose of this work is to introduce a method with a view to obtaining the

crystallographic point groups of ®ve-dimensional space, i.e. the subgroups of the

holohedries of these space crystal families. This paper is speci®cally devoted to

numerical analysis, whereas the following ones deal with some applications to

crystallography. These results have been obtained through a collaboration

between two teams: H. Veysseyre (Institut SupeÂrieur des MateÂriaux) for the

numerical analysis, R. Veysseyre, D. Weigel and Th. Phan (Ecole Centrale Paris)

for the crystallographic part.

1. Introduction

This paper deals with numerical analysis and computer science

with a view to determining both groups generated by p

elements and its subgroups. In order to apply these results to

®ve-dimensional space crystallography, the number p has been

limited to ®ve because it is suf®cient for generating all point

groups of this space as we shall explain in x3 (Remark 1).

To begin with, some results on the number of crystal-

lographic point-symmetry operations (PSOs, for short) of ®ve-

dimensional space (or 5D space) are to be recalled. These are

important for the determination of the point groups and for

Hermann±Mauguin symbols (HM symbols) or for Weigel±

Phan±Veysseyre symbols (WPV symbols) (Weigel et al., 1987).

Some of these results are published in the Report of a

Subcommittee on the Nomenclature of n-Dimensional Crys-

tallography (Janssen et al., 1999).

Therefore, the ®rst step consists of the list of the 38 PSOs of

5D space, i.e. 19 positive PSOs (PSO+ or proper rotations) and

19 negative PSOs (PSOÿ or improper rotations). There are

different ways to describe the PSOs. Two of them are taken

into consideration. First, we use a matrix representation

connected with the crystal family cells, i.e. a list of matrices

5 � 5 with integer entries. Then, these PSOs can be de®ned

by the characteristic polynomials of the associated operators

in a Euclidean space (Veysseyre et al., 1990, 1994). The char-

acteristic polynomials are numbered from 1 to 19 for the

PSO+s and from 20 to 38 for the PSOÿs. Here are two

examples:

polynomial No. 8 for PSO 42 ��ÿ 1���� 1�2��2 � 1�;
polynomial No. 27 for PSO 4�1 ��� 1�3��2 � 1�.
The characteristic polynomial representation permits one

to compare two or several crystallographic point groups

isomorphic to the same abstract group as explained in x4.

Symbols of some PSOs are the classical HM symbols such as

2 for a twofold rotation, 3 for a threefold rotation. As far as

the other PSOs are concerned, we have already suggested

WPV symbols, which are similar to the HM symbols and

connected with the PSO geometrical de®nition (Weigel et al.,

1987).

Then, we de®ne the 32 crystal families of 5D space, their

classi®cation, their names and their holohedry symbols. We

have already suggested a method to construct the crystal cells

of 5D space through the cells of crystal families of 2D, 3D and

4D spaces (Veysseyre et al., 1991). Obviously, we have found

the same number as the one given by Plesken (1981). Actually,

there are:

(i) four crystal families in 2D space: oblique, rectangle,

square, hexagon;

(ii) six crystal families in 3D space: triclinic, monoclinic,

orthorhombic, tetragonal, hexagonal, cubic;

(iii) 23 crystal families in 4D space: hexaclinic, triclinical, di

obliques, oblique rectangle, orthotopic 4d, square oblique,

hexagon oblique, diclinic di squares, diclinic di hexagons,

square rectangle, hexagon rectangle, monoclinic di squares,

monoclinic di hexagons, di squares, hexagon square, di hex-

agons, cubic-al, monoclinic di iso squares or octodic, decadic,

monoclinic di iso hexagons or dodecadic, di iso hexagons,

rhombotopic (ÿ1=4), hypercubic 4d;

(iv) 32 crystal families in 5D space. They are listed in

Table 1.

The construction of some lattice cells should be recalled.

For instance:

(1) The 4D hexaclinic lattice cell is based on four unequal

vectors; the angles between these vectors have any value.

(2) The 5D decaclinic lattice cell is based on ®ve unequal

vectors; the angles between these vectors have any

value.
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(3) The 4D di obliques cell is constructed from two different

parallelograms belonging to two orthogonal planes (xy) and

(zt).

(4) The 5D triclinic square cell is built up from a triclinic cell

and a square belonging to two orthogonal subspaces (xyz) and

(tu).

(5) The triclinic rectangle, triclinic hexagon, square

orthorhombic and hexagon orthorhombic cells follow a similar

process.

The de®nition of the geometrically Z reducible and

geometrically Z irreducible crystal families is developed in

Weigel & Veysseyre (1991, 1993) and Veysseyre et al. (1993).

This de®nition is connected to the geometry and the splitting

up of the metric tensor of a crystal cell and to the bases of the

irreducible representations of the crystal family holohedry.

Let x, y, z, t, u, . . . be the n vectors de®ning a basis of a

primitive cell of a crystal family of nD space. This family is said

to be `geometrically Z irreducible' (gZ-irr) if all these

operators belong to the same irreducible representation with

integer entries of its holohedry character table. If this property

is not veri®ed, the family is said to be `geometrically Z redu-

cible' (gZ-red); in this case, the metric tensor can be split into

two or more parts or, in other words, the crystal family cell is

the orthogonal product of two or more cells belonging to two

or more orthogonal subspaces of nD space.

Out of the 32 crystal families of 5D space, three are gZ-irr.

These are the following ones: decaclinic, rhombotopic (ÿ1=5)

and hypercubic 5d families. 29 are gZ-red. The cell of each one

is the orthogonal product of two, three, four or ®ve elementary

cells belonging to spaces of dimension lower than ®ve. For

instance, 11 of them are `right hyperprism based on one irre-

ducible crystal cell' of 4D space. Hence, the suf®x `al' in their

names. Six of them are the direct product of the two irre-

ducible crystal cells of 3D space and of the three irreducible

crystal cells of 2D space and so on.

The name selected for the crystal families should be both

simple and precise. Hence, the suf®x `al' as explained

previously. Besides, the adjective `orthogonal' has been

cancelled when situated between two names, for instance the

cell of the crystal family named `cubic oblique' is the

orthogonal product of a cubic and an oblique (parallelogram)

cell. Moreover, the order adopted for writing the cell names is

the decreasing order of the space dimensions on which they

are based. Finally, if the elementary cells belong to the same

dimensional space, the most symmetrical cell is mentioned ®rst

(Weigel & Veysseyre, 1993).

Table 1
Number of point groups of crystal families of ®ve-dimensional space.

First column: No. of the crystal families. Second column: names of the crystal families. Third column: WPV symbols of the crystal family holohedries. Fourth
column: order of the holohedries. Fifth column: No. of point groups belonging to each family.

No. Family names WPV holohedry symbols Holohedry order No. of subgroups

I Decaclinic �15 2 2
II Hexaclinic-al �14?m 4 3
III Triclinic oblique �1?2 4 3
IV Triclinic rectangle �1?mm 8 4
V (Di obliques)-al 2?2?m 8 4
VI Triclinic square �1?4mm 16 7
VII Triclinic hexagon �1?6mm 24 12
VIII Oblique orthorhombic 2?mmm 16 8
IX Orthotopic 5d mmmmm 32 8
X (Square oblique)-al 4mm?2?m 32 24
XI (Hexagon oblique)-al 6mm?2?m 48 35
XII (Diclinic di squares)-al 44?m 8 3
XIII (Diclinic di hexagons)-al 66?m 12 5
XIV Square orthorhombic 4mm?mmm 64 33
XV Hexagon orthorhombic 6mm?mmm 96 45
XVI (Monoclinic di squares)-al (44.2)?m 16 4
XVII (Monoclinic di hexagons)-al (66.2)?m 24 7
XVIII Cubic oblique m�3m?2 96 16
XIX (Di squares)-al 4mm?4mm?m 128 59
XX (Hexagon square)-al 6mm?4mm?m 192 119
XXI (Di hexagons)-al 6mm?6mm?m 288 116
XXII Cubic rectangle m�3m?mm 192 31
XXIII Octodic-al (monoclinic di iso squares-al) ([8].2)?m 32 7
XXIV Decadic-al ([10].2)?m 40 12
XXV Dodecadic-al (monoclinic di iso hexagons-al) ([12].2)?m 48 7
XXVI Cubic square m�3m?4mm 384 31
XXVII Cubic hexagon m�3m?6mm 576 59
XXVIII (Hypercubic 4 d)-al ([8].m�3m)?m 768 90
XXVIIIa (Hypercubic 4d Z centred)-al {([12].2)m�3m}?m 2304 51
XXIX (Di iso hexagons)-al ([12].2.6mm)?m 576 104
XXX {Rhombotopic (ÿ1/4)}-al ([10].�43m)?m 480 23
XXXI Hypercubic 5d ([8].m�3m).[�5] 3840 13
XXXII Rhombotopic (ÿ1/5) ([10].�43m).36 1440 10
Number of point groups of ®ve-dimensional space: 955



In the case of reducible crystal families, the holohedry

symbols can be easily found. Actually, the holohedries of these

families are the direct product of the holohedries of the

elementary crystal families. Here is an example. The cell of the

crystal family numbered III is the Cartesian product of the

triclinic cell and of the oblique cell; these two cells belong to

two orthogonal spaces. Hence, the abridged name of this

crystal family is ` triclinic oblique'. The family holohedry is the

direct product of two groups, �1 for the triclinic holohedry and

2 for the oblique holohedry. It is possible to write the holo-

hedry symbol of this family �1�2, but owing to the geometrical

construction of this cell symbol �1?2 is better. Therefore, the

symbol ? has mathematical and geometrical meanings.

2. Determination of finite group elements

This section begins with the determination of all the elements

of a ®nite group de®ned by p generators. With a view to

applying these results to crystallography, we assume that the

group generators are de®ned by means of invertible square

matrices, i.e. matrices whose determinant is not null. The

studied groups are the holohedries of the 32 crystal families of

5D space. This is the reason why these families, their holo-

hedries together with the order of these groups are listed in

Table 1 (the ®rst four columns).

The identity element is denoted I; in nD space, element I is

represented by the identity matrix of order n.

(1) The ®rst stage consists in determining a ®nite group

generated by one element, i.e. a cyclic group. Let A be this

element of order a. Hence, the cyclic group generated by the

element A has for elements: I, A, A2, . . . , Aaÿ1.

If the order of the group is an even number, except for

number two, the elements of this cyclic group can be as

follows: I, B, A, BA, A2, BA2, . . . , Aa0ÿ1, BAa0ÿ1, in which

a = 2a0 and B = Aa0, hence B2 = I.

If element B equals ÿI, the cyclic group elements are as

follows: � I, �A, �A2, . . . , �Aa0ÿ1. In this case, we can stop

after ®nding the following property: Aa0 = B = ÿI.

(2) The study of a group generated by two elements does

not allow an easy generalization to the group generated by any

number of elements. Consequently, the groups generated by

three elements are thoroughly studied. Then, this process can

be and has been generalized to the groups generated by p

elements.

Let A, B, C be these three elements and a, b, c their

respective orders.

Consequently: Aa = Bb = Cc = I. Then, each element of the

group can be written for instance as:

A�B�C
A�0B�0C
 0A�00B�00 ; . . . ;

in which �, �0, �00 2 [0, a ÿ 1]; �, �0, �002 [0, b ÿ 1]; 
, 
 0, 
 00 2
[0, c ÿ 1]. The length of the sequence is always ®nite for the

studied point group.

The different products of type (A�B�C
A�0B�
0
C


0
A
0 0
B�

0 0
. . . )

obtained by giving to �, �, 
, �0, �0, 
 0, �00, �00, . . . all the

possible integers successively generate all group elements.

This sequence of products is ®nished if, in the sequence �, �, 
,

�0, �0, 
 0, �00, �00, . . . , the different integer values given to two

consecutive elements does not give a new result.

In some cases, it is possible to reduce the number of

products. If one of the integers a, b or c is even, for instance if

a = 2a0 and Aa0 =ÿI, each element of the group can be written:

�A�B�C
E"A�0B�0C
 0A�00B�00 . . . ;

in which �, �0, �00 2 [0, a0ÿ1]; �, �0, �00 2 [0, ÿ1]; 
, 
 0, 
 00 2
[0, ÿ1], with ~b � b=2, if b is even and Bb=2 � ÿI, and ~b � b in

the other cases. ~c � c=2, if c is even and Cc=2 � ÿI, and ~c � c

in the other cases.

(3) For a group generated by q elements, the method is

similar because each element of the group can be written:

A�B�C
D�E"A�0B�0C
 0D�0E"0A�00B�00C
 00D�00E"00 . . .

and (q ÿ 1) consecutive integers in the sequence �, �, 
, �, ",
�0, �0, 
 0, �0, "0, �00, �00, 
 00, �00, "00, . . . cannot be null.

3. Determination of the subgroups of a point group D

All the elements of the group being de®ned by means of

matrices, it is possible to determine all the subgroups of this

group.

(1) To begin with, it is necessary to determine set G1 of the

distinct groups g1,i in which i 2 [1, �1], generated by one

element of group D. These �1 groups g1,i are classi®ed in set G1

through a chosen criterion and they are called the G-genera-

tors of the group. Generally, the number of G-generators is

much lower than the order N of the group.

(2) Then, set Gp is determined through set Gpÿ1 as follows:

every group gp,j is generated by p G-generators such that

(p ÿ 1) of them are the generators of a group gpÿ1,i in which

i 2 [1, �pÿ1] and the pth is different. These groups are classi-

®ed in a set Gp if they are new groups, i.e.

gp;j �
Spÿ1

i�1

Gi

� � S Sjÿ1

k�1

gp;k

� �
:

(3) If the integer �p equals 0 (i.e. if set Gp is empty), at the

end of sequence 2, we pass onto sequence 4.

If not, we come back to sequence 2 with the next value of p.

Remark 1. For the point groups of 5D space, number �6 equals

0. All point groups of 5D space have been generated by at

most ®ve generators and for point groups of 6D space by at

most six generators.

(4) When all the sets Gp are obtained, all the groups:

gp;j 2 Gp 8 j 2 �1; �p� and 8p 2 �0; 5�
are taken into consideration.

Then, each element of every subgroup gp,j is replaced by its

characteristic polynomial number. Thus, we obtain 
p,j that we

put together in a set ÿ. We notice that several 
s may be

identical whereas groups g are different.


p;j 2 ÿ 8 j 2 �1; �00p� 8 p 2 �0; 5� �0p � �p:
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Hence, ÿ is the set of the point-symmetry groups of the

studied space.

4. Determination of the point groups

After completing the previous study, a computer program was

set up with a view to discovering the subgroups of each

holohedry.

Each crystal family of nD space can be de®ned by its cell

metric tensor, i.e. a symmetric n � n matrix, the entries are all

the scalar products of the n vectors of the cell. Owing to the

possible symmetries of this system of vectors, the independent

entry number, i.e. the parameter number de®ning the cell

metric tensor, is lower than n�n� 1�=2 except for one family.

The crystal families are classi®ed in decreasing order of this

parameter number. For example, in 5D space, family No. I is

the decaclinic crystal family [n�n� 1�=2 � 15 parameters for

de®ning its metric tensor], family No. II is the hexaclinic-al

crystal family (11 parameters for de®ning its metric tensor),

. . . , family No. XXXII is the rhombotopic (ÿ1=5) crystal

family (1 parameter for de®ning its metric tensor).

All point groups of 5D space are the different subgroups of

the 32 holohedries. Our program gradually cancelled the

groups that had been found in the crystal families already

studied. The holohedry symbols are obtained as the direct

product of holohedries of subfamilies for the gZ-red. crystal

families and from the study of the point operations de®ning

the gZ-irred. crystal families; for instance, 4mm?mmm

(square orthorhombic family), [10].�43m.36 (rhombotopic

ÿ1=5 family).

Yet another dif®culty appears owing to the difference

between an abstract group and a crystallographic group. For

instance, there is one and only one abstract group of order 2

generated by element a such as a2 = I (identity element). But,

if we consider the point groups of order 2, they can be

generated by one of the following elements: 2, �14, m, �1 and �15,

which are de®ned by ®ve different characteristic polynomials.

Consequently, there are ®ve different point groups of order 2

in 5D space isomorphic to the same abstract group. This shows

the difference between an abstract group and a point group.

This emphasizes the existence of 955 point groups in 5D

space belonging to 32 crystal families.

After determining the 5D space subgroups, it seems inter-

esting to draw a diagram between these groups, i.e. to point

out the connection between the 32 holohedries (Fig. 1), or to

point out the relation `group±subgroup'. Then, considering

only 32 families proved unsatisfactory for this purpose.

Figure 1
Diagram showing links between the point-symmetry groups of ®ve-
dimensional space. Left scale: holohedry order. Nodes of the diagram:
No. of the crystal family or subfamily.

Table 2
Number of point groups of crystal subfamilies of ®ve-dimensional space.

First column: names of the crystal families. Second column: No. of the crystal
families and of the subfamilies. Third column: holohedry order. Fourth
column: No. of point groups belonging to each subfamily.

Family names Subfamilies
Holohedry
order

No. of
subgroups

Triclinic hexagon VIIb 6 2
VIIa 12 3
VII 24 7

Oblique orthorhombic VIIIa 8 3
VIII 16 5

Orthotopic 5d IXa 16 4
IX 32 4

(Square oblique)-al Xa 16 8
X 32 16

(Hexagon oblique)-al XId 12 3
XIc 12 3
XIb 24 5
XIa 24 8
XI 48 16

(Diclinic di hexagons)-al XIIIa 6 2
XIII 12 3

Square orthorhombic XIVa 32 15
XIV 64 18

Hexagon orthorhombic XVb 24 4
XVa 48 15
XV 96 26

(Monoclinic di hexagons)-al XVIIa 12 3
XVII 24 4

Cubic oblique XVIIIa 48 5
XVIII 96 11

(Di squares)-al XIXa 64 25
XIX 128 34

(Hexagon square)-al XXa 96 31
XX 192 88

(Di hexagons)-al XXIh 24 7
XXIg 18 2
XXIf 36 3
XXIe 36 3
XXId 72 8
XXIc 72 4
XXIb 144 23
XXIa 144 23
XXI 288 43

Decadic-al XXIVa 20 7
XXIV 40 5

Cubic hexagon XXVIIa 96 12
XXVII 576 47

(Hypercubic 4d)-al XXVIII 768 90
(Hypercubic 4d Z centred)-al XXVIIIa 2304 51
(Di iso hexagons)-al XXIXa 144 15

XXIX 576 89
{Rhombotopic (ÿ1/4)}-al XXXa 240 8

XXX 480 15



For example, the crystal family XXVI (cubic square)

holohedry of order 384 contains subgroups belonging to

crystal family XX {(hexagon square)-al} without containing its

holohedry of order 192. Consequently, there is a group±

subgroup relation between these two crystal families but not

between their holohedries. More precisely, crystal family

XXVI contains the highest subgroup of crystal family XX.

Therefore, this subgroup of order 96 should appear on the

diagram connected to crystal family XXVI holohedry. This

subgroup is the holohedry of a centred subfamily of crystal

family XX and this subfamily is denoted XXa.

18 of the 32 crystal families of 5D space contain one or

several centred subfamilies whose holohedries are nodes of

the diagram. These are the families:

VII;VIII; IX;X;XI;XIII;XIV;XV;XVII;XVIII;XIX;

XX;XXI;XXIV;XXVII;XXVIII;XXIX;XXX

Thus, we have found 64 nodes on the diagram.

In Table 1, each family is given their number of subgroups

(last column) whereas the number of subgroups of each

subfamily is given in Table 2

On the other hand, the diagram of Fig. 1 shows that all these

holohedries are subgroups of six crystal family holohedries.

They are as follows:

Family XXVII cubic hexagon

Family XXVIII (hypercubic 4d Z centred)-al

Family XXIX (di iso hexagons)-al

Family XXX {rhombotopic (ÿ1=4)}-al

Family XXXI hypercubic 5d

Family XXXII rhombotopic (ÿ1=5)

In order to compare 2D, 3D, 4D and 5D spaces with each

other, it should be noted that:
* in 2D space, all the holohedries are subgroups of two

crystal family holohedries:

square family hexagon family
* in 3D space, all the holohedries are subgroups of two

crystal family holohedries:

cubic family hexagonal family
* in 4D space, all the holohedries are subgroups of four

crystal family holohedries:

hypercubic 4d Z centred family rhombotopic (ÿ1=4)

family

di iso hexagons family hexagon square family

A strong analogy between these results is to be noticed.

5. Conclusions

The classi®cation of all subgroups of the 32 holohedries, family

by family, results in the conclusions shown Table 1. In Table 3,

these subgroups are classi®ed order by order. Finally, some

statistical results can be obtained about the subgroup classi-

®cation, order by order, for the different crystal families and

subfamilies. The results of this study are not reported in this

paper but they are at the disposal of the reader upon request.

All through this study, the analysis of the different types of

centring has appeared as a main and useful fact. Actually, out

of the 32 crystal families, 18 are split into two or several

centred subfamilies. The study of all these types of centring

will be given in a further paper. As for the point-group

symbols of some families, they are explained in paper 2

(Veysseyre et al., 2002).
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Table 3
Number of point symmetry groups (classi®ed order by order) of ®ve-dimensional space.

Order: order of the group. No: number of groups of given order.

Order 1 2 3 4 5 6 8 9 10 12 16 18 20
No. 1 5 2 16 1 18 43 1 5 58 67 13 7

Order 24 32 36 40 48 60 64 72 80 96 120 128 144
No. 121 61 50 5 122 2 33 80 2 58 10 11 63

Order 160 192 240 256 288 320 360 384 480 576 640 720 768
No. 3 26 8 1 24 3 1 9 1 7 1 3 1

Order 960 1152 1440 1920 2304 3840
No. 1 5 1 3 1 1


